Reducible Boundary Energy Control for Bi-Hamiltonian Systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Bi-Hamiltonian Systems

We define quantum bi-Hamiltonian systems, by analogy with the classical case, as derivations in operator algebras which are inner derivations with respect to two compatible associative structures. We find such structures by means of the associative version of Nijenhuis tensors. Explicit examples, e.g. for the harmonic oscillator, are given.

متن کامل

Bi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables

We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.

متن کامل

Hamiltonian Problems for Reducible Flowgraphs

In this paper, we discuss hamiltonian problems for reducible Powgraphs. The main result is finding, in linear time, the unique hamiltonian cycle, if it exists. In order to obtain this result, two other related problems are solved: finding the hamiltonian path starting at the source vertex and finding the hamiltonian cycle given the hamiltonian path.

متن کامل

Completely Integrable Bi-hamiltonian Systems

We study the geometry of completely integrable bi-Hamiltonian systems, and in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the af...

متن کامل

Fluid dynamical systems as Hamiltonian boundary control systems

It is shown how the geometric framework for distributed-parameter portcontrolled Hamiltonian systems as recently provided in [14, 15] can be adapted to formulate ideal adiabatic fluids with non-zero energy flow through the boundary of the spatial domain as Hamiltonian boundary control systems. The key ingredient is the modification of the Stokes-Dirac structure introduced in [14] to a Dirac str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers

سال: 2014

ISSN: 0453-4654,1883-8189

DOI: 10.9746/sicetr.50.829